On the Quantitative Analysis of Decoder-Based Generative Models

نویسندگان

  • Yuhuai Wu
  • Yuri Burda
  • Ruslan Salakhutdinov
  • Roger B. Grosse
چکیده

The past several years have seen remarkable progress in generative models which produce convincing samples of images and other modalities. A shared component of many powerful generative models is a decoder network, a parametric deep neural net that defines a generative distribution. Examples include variational autoencoders, generative adversarial networks, and generative moment matching networks. Unfortunately, it can be difficult to quantify the performance of these models because of the intractability of log-likelihood estimation, and inspecting samples can be misleading. We propose to use Annealed Importance Sampling for evaluating log-likelihoods for decoder-based models and validate its accuracy using bidirectional Monte Carlo. Using this technique, we analyze the performance of decoder-based models, the effectiveness of existing log-likelihood estimators, the degree of overfitting, and the degree to which these models miss important modes of the data distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generative Analysis of the Acquisition of Negation by Iranian EFL Learners: A Typological Study

The present study was an attempt to investigate the acquisition of negationproperties by Persian monolingual and Kurdish-Persian bilingual learners of Englishacross different levels of language proficiency and within a generative framework.Generative models are generally concerned with issues such as universal grammar(UG), language transfer, and morphological variability in nonprimary languaged...

متن کامل

Entropy Estimates for Generative Models

Different approaches to generative modeling entail different approaches to evaluation. While some models admit test likelihood estimation, for others only proxy metrics for visual quality are being reported. In this paper, we propose a simple method to compute differential entropy of an arbitrary decoder-based generative model. Using this approach, we found that models with qualitatively differ...

متن کامل

Voice-based Age and Gender Recognition using Training Generative Sparse Model

Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...

متن کامل

Improvement of generative adversarial networks for automatic text-to-image generation

This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...

متن کامل

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.04273  شماره 

صفحات  -

تاریخ انتشار 2016